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Universality and scaling study of the critical behavior of the two-dimensional Blume-Capel mode
in short-time dynamics

Roberto da Silva,* Nelson A. Alves,† and J. R. Drugowich de Felı´cio‡
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In this paper we study the short-time behavior of the Blume-Capel model at the tricritical point as well as
along the second order critical line. Dynamic and static exponents are estimated by exploring scaling relations
for the magnetization and its moments at an early stage of the dynamic evolution. Our estimates for the
dynamic exponents, at the tricritical point, arez52.215(2) andu520.53(2).
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I. INTRODUCTION

Numerical simulation in the short-time regime has b
come an important tool to study phase transitions and crit
phenomena. The reason is that universality and scaling
havior are already present in the dynamic systems since
early stages of their evolution@1,2#. Moreover, this kind of
approach reveals the existence of a new and unsuspe
critical exponent. As shown by Janssenet al. @1# on the basis
of renormalization group theory, if the parameters are
justed to their critical values but with initial configuration
characterized by nonequilibrium states, the time evolution
quantities such as magnetization exhibits a polynomial
havior governed by an exponentu, which is independent o
the known set of static exponents and of the dynamical c
cal exponentz. This new exponent characterizes the so cal
‘‘critical initial slip,’’ the anomalous behavior of the magne
tization when the system is quenched to the critical temp
tureTc . Working with systems without conserved quantitie
model A in the terminology of Halperinet al. @3#, Janssen
et al. found a scaling form for the moments of the magne
zation, which sets soon after a microscopic time scaletmic .
Those relations have been confirmed in several nume
experiments@4–6#. For thekth moment of the magnetiza
tion, this scaling form reads

M (k)~ t,t,L,m0!5b2kb/nM (k)~b2zt,b1/nt,b21L,bx0m0!.
~1!

Here b is an arbitrary spatial scaling factor,t is the time
evolution, and t is the reduced temperature,t5(T
2Tc)/Tc . As usual, the exponentsb and n are the well-
known static exponents, andz is the dynamic one. Equatio
~1! depends on the initial magnetizationm0 and gives origin
to the new exponentx0, the scaling dimension of the initia
magnetization, related tou by x05zu1b/n.

For a large lattice sizeL and small initial magnetization
m0, the system in its early stage presents small spatial
temporal correlation lengths, which may eliminate usual
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nite size problems. In this limit, if we choose the scali
factor b5t1/z @1,5,6# at the critical temperature (t50), we
obtain

M ~ t,m0!;m0tu ~2!

from the scaling relation~1!. The exponentu has been cal-
culated for the two-dimensional~2D! @5,7# and three-
dimensional~3D! @7,8# Ising models, 2D three-state Pot
model @5#, Ising model with next-nearest-neighbor intera
tions @9#, and Ising model with a line of defects@10#. In
addition, this short-time universal behavior was found in
reversible models with synchronous@11# and continuous
time dynamics@12#. In all of those cases, a positive value f
u has been found, indicating a surprising initial increase
the magnetization in the short-time regimetmic,t,t i

;m0
2z/x0. This effect can be related to a ‘‘mean field’’~MF!

behavior since the system presents small correlation len
in the beginning of the time evolution. Thus, when the s
tem is quenched to the critical temperatureTc , it behaves as
in an ordered state sinceTc,Tc

(MF) @13#.
On the other hand, as shown by Janssen and Oerding@14#,

the behavior of a thermodynamic system is more comple
a tricritical point, where the corresponding exponentu may
attain negative values.

At a tricritical point the magnetization shows a crossov
from the logarithmic behaviorM (t);m0@ ln(t/t0)#

2a, ~where
a is an universal exponent! at short timest0[tmic!t!m0

24

to long-timet21/4 power law behavior with logarithmic cor
rections,M (t);@ t/ ln(t/t0)#

21/4 in three dimensions. This be
havior can be stated in the generalized form

M ~ t !5m0@ ln~ t/t0!#2aFMXS t

ln~ t/t0! D
1/4

@ ln~ t/t0!#2am0C,
~3!

whereFM(x);1 or FM(x);1/x, respectively, for vanishing
and large arguments. Below three dimensions it reduce
the scaling form

M ~ t !;m0tu. ~4!
©2002 The American Physical Society30-1
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Here u is the exponent related to the tricritical point of th
relaxation process at early times which is expected to ass
negative values.

In this paper, we perform short-time Monte Carlo~MC!
simulations to explore the critical dynamics of the 2
Blume-Capel model. We evaluate the dynamic exponenu
andz, as well as the static exponentsn andb at the tricritical
point. To the best of our knowledge, this is the first time it
done numerically. We also estimate the dynamic expone
along the second order critical line. We observe a clear tr
toward the values ofz andu for the corresponding 2D Ising
values when the crystal fieldD becomes large and negativ
indicating dynamic universality along the critical line in th
limit D→2`.

In the following section we present the model and
phase diagram. Section III contains the main scaling re
tions and describes our short-time MC simulations. Res
are presented for critical points on the second-order tra
tion line. In Sec. IV, we explore the short-time dynamics
the tricritical point. Section V contains a brief outlook an
concluding remarks.

II. THE MODEL

The Blume-Capel@15# ~BC! model is a spin-1 mode
which has been used to describe the behavior of3He-4He
mixtures along thel line and near the critical mixing point
Apart from its practical interest, the BC model has intrins
interest since it is the simplest generalization of the Is
model (s51/2) exhibiting a rich phase diagram with fir
and second-order transition lines as well as a tricritical po
Tricritical points appear in3He-4He mixtures such that whe
a small fraction of3He is added to4He, a critical line ter-
minates at a concentration of3He approximately at 0.67. Th
BC model, or its well known generalization, the Blum
Emery-Griffiths model@16,17#, was studied by mean-field
approximation, real space renormalization group sche
@18#, Monte Carlo renormalization group approach@19#, and
finite-size scaling combined with conformal invariance@20–
22#. The Hamiltonian of the two-dimensional model is

H52J(
^ i , j &

SiSj1D(
i 51

Si
2 , ~5!

where ^ i , j & indicates nearest neighbors onL2 lattices and
Si5$21,0,1%. The parameterJ is the exchange coupling
constant andD is the crystal field. We show its phase di
gram in Fig. 1. Table I lists pointsD/J on the second orde
critical line and at the tricritical point where we have pe
formed our simulations. Those points in Table I were o
tained from @23# and from a private communication@22#.
Table I also contains our results for the corresponding crit
and tricritical exponents.

We remark that along the critical line, this model prese
a critical behavior similar to that of the Ising model. How
ever, exactly at the tricritical point the exponents chan
abruptly. They are given by the dimensions of the irreduci
representations of Virasoro algebra@24,25# with central
charge~conformal anomaly number! c57/10 @21#. Finite-
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size scaling combined with conformal invariance@20# per-
mitted to observe a smooth transition between Ising-like a
tricritical behavior. In finite systems, Ising-like behavior
reached only whenD→2`. In that limit b/(221/n)
→0.125, the exact value for the Ising model. In our sho
time simulations the same kind of Ising-like behavior is o
served for the dynamic exponentsz andu as we move along
the critical line.

III. NONEQUILIBRIUM SHORT-TIME DYNAMICS
AT A CRITICAL POINT

In short-time MC simulations critical slowing down ca
be neglected because spatial and time correlation length
small in the early stages of evolution. On the other hand,
need to deal with several samples with independent in
configurations since the systems are far from equilibrium
fact, this approach requires calculation of the average~over
samples! of the magnetization and of its momentsM (k)(t),

M (k)~ t !5
1

NsL
kd (

j 51

Ns S (
i 51

Ld

Si j ~ t !D k

, ~6!

whereSi j (t) denotes the spini of the j th sample at thetth
MC sweep. HereNS denotes the number of samples andLd

is the volume of the system. This kind of simulation is pe
formedNB times to obtain our final estimates as a function
t. In this paper, the dynamic evolution of the spins$Si% is
local and updated by the heat-bath algorithm.

A. The critical initial slip

The evolution of thekth moment of magnetization in th
initial stage of the dynamic relaxation can be obtained fr
Eq. ~1! for large lattice sizesL at t50 with b5t1/z. This
yields

M (k)~ t,m0!5t2kb/nzM (k)~1,tx0 /zm0!. ~7!

FIG. 1. Phase diagram of the Blume-Capel model. The das
curve is a first-order transition line and the solid curve is a sec
order one. These curves are connected by a tricritical point~TP!.
The marked points (3,d) correspond to the simulated values.
0-2
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TABLE I. Critical parameters and exponents for the 2D Blume-Capel model.

D/J kBT/J u z z 1/n 1/n b
@Eq. ~8!# @Eq. ~12!# @Eq. ~16!# @Eqs.~17! and ~12!# @Eqs.~17! and ~16!# @Eq. ~14!#

Critical points
0 1.6950 0.194~3! 2.16~2! 2.106~2! 0.99~2! 0.97~2! 0.134~2!

23 2.0855 0.193~5! 2.16~1! 2.128~2! 1.00~1! 0.99~1! 0.125~2!

25 2.1855 0.187~5! 2.15~1! 2.139~2! 1.00~3! 0.99~3! 0.125~4!

Tricritical point
1.9655 0.610 20.53(2) 2.21~2! 2.215~2! 1.86~2! 1.864~6! 0.0453~2!
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By expanding the corresponding first moment equation
smallm0, we obtain Eq.~2! under the condition thattx0 /zm0

is sufficiently small, which sets a time scalet i;m0
2z/x0

@1,4,6# where that phenomena can be observed.
In Fig. 2~a! we present our results for the exponentu at

the critical pointkBTc /J51.6950 andDc /J50, for lattice
sizeL580 and five different initial magnetizationsm0. Our
estimates for eachu5u(m0) were obtained fromNB55 in-
dependent bins withNS510 000, for t up to 100 sweeps
Figure 2~b! illustrates the determination ofu for m050.02
from a log-log plot of the magnetization versus time. T
linear fitting in Fig. 2~a! givesu50.193(2)~not presented in
Table I! with goodness of fit@26# Q50.72.

FIG. 2. ~a! Exponentu in function of initial magnetizationm0

for square lattices withL580. The straight line is a least-square
to the data.~b! Time evolution of the magnetization forL580 and
m050.02.
02613
r Another method has been recently proposed by Tome´ and
de Oliveira@27# to evaluateu. It avoids the sharp preparatio
of samples with defined and nonzero magnetization and
delicate numerical extrapolationm0→0. The method is
based on the time correlation function of the total magn
zation,

C~ t !5
1

Ld K (
i 51

Ld

(
j 51

Ld

Si~ t !Sj~0!L . ~8!

Starting from random initial configurations the above cor
lation behaves asC(t);tu, which permits us to obtain the
exponentu from a log-log plot ofC(t) versust. We obtained
u50.194(3) forkBTc /J51.6950 andDc /J50 choosing the
time interval@20–150# in which the value ofQ (Q50.99)
was highest. This value is in complete agreement with
above estimate of the exponentu and it is consistent within
error bars with previous results for the 2D Ising model.
Table I we also present results foru at other points of the
critical line.

B. Dynamic critical exponent z

The observables in short-time analysis are described
different scaling relations according to the initial magnetiz
tions. In particular, the second momentM (2)(t,L) in Eq. ~6!,

M (2)5
1

L2d K (
i 51

Ld

Si
2L 1

1

L2d (
iÞ j

Ld

^SiSj&, ~9!

with m050 behaves asL2d since in the short-time evolution
the spatial correlation length is very small when compa
with the lattice sizeL. Thus, one arrives at@5,6#

M (2)~ t,L !5t22b/nz M (2)~1,t21/zL !;t (d22b/n)/z. ~10!

This equation can be used to determine relations involv
the static critical exponents and the dynamic exponenz
@6,28#. However, a way to evaluate independently the ex
nentz is through the time-dependent fourth-order Binder c
mulant at the critical temperature (t50),

U4~ t,L,m0!512
M (4)~ t,L,m0!

3@M (2)~ t,L,m0!#2
, ~11!

which obeys the equation
0-3
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U4~ t,L,m0!5U4~b2zt,b21L,bx0m0!. ~12!

If we setm050, we eliminate the dependence on the exp
nentx0 and the exponentz can be evaluated through scalin
collapses of the generalized cumulant for different latt
sizes@4,29#. To match the Binder cumulantsU4(t1 ,L1) and
U4(t2 ,L2) obtained from two time series for lattice sizesL1
and L2, with b5L2 /L1 (L2.L1), we interpolate the serie
U4(t,L1) to obtainŨ4(b2zt,L1). Next, we define the func
tion

x2~z!5
1

t f2t i
(
t5t i

t f

@Ũ4~b2zt,L1!2U4~ t,L2!#2, ~13!

where the best estimate forz corresponds to the one whic
minimizesx2(z).

In Fig. 3 we show the scaling collapses of the Bind
cumulants for the following pairs of lattices (L1 ,L2)
5(10,20),(20,40), and (40,80) atkBTc /J51.6950, and
Dc /J50. From the largest pair of lattices we obtainedz
52.16(2) in the time interval@50–1000#. Our error estimate
is based on different collapses obtained fromNB55 inde-
pendent bins for each lattice size.

Another universal behavior of the dynamic relaxation p
cess also described by Eq.~1! can be obtained with the initia
condition m051 @30–32#. This condition is related to an
other fixed point in the context of renormalization group a
proach. Thus, starting from an initial ordered state one
tains a power law decay of the magnetization at the crit
temperature,

M ~ t !;t2b/nz, ~14!

when we chooseb2zt51 in the limit of L→`. Taking into
account this relation, another method has been propose@6#
to estimate the dynamic exponentz. This approach uses th
second order cumulant

FIG. 3. CumulantsU4(t,L) for L510, 20, 40, and 80 for initial
magnetizationm050. The open circles on the lines show the c
mulants for lattice sizesL/2 rescaled in time withz obtained from
Eq. ~13!.
02613
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U2~ t,L !5
M (2)~ t,L !

@M ~ t,L !#2
21, ~15!

which should take the simple formU2(t,L→`);td/z. The
advantage of this procedure is that curves for different
tices lie on the same straight line in a log-log plot witho
any rescaling in time. However, this technique has not b
successful in at least two well known models: the tw
dimensionalq53 Potts model@6# and the Ising model with
three spin interactions in just one direction@10#. The reason
for the above disagreement may be related to the behavio
Eq. ~9! whenm051. We have proposed@33# that this scaling
form td/z could indeed be obtained working with the rat
F25M (2)/M2 with different initial conditions for each mo
ment since we know the behavior of the second momen
the magnetization when samples are initially disorde
(m050) and also the time dependence of the magnetiza
when samples are initially ordered (m051). Therefore, we
obtain a mixed function

F2~ t !5
M (2)~ t,L !um050

@M ~ t,L !#2um051

;td/z. ~16!

A log-log plot with error bars for the critical poin
kBTc /J51.6950 andDc /J50 is presented in Fig. 4 forL
5160. We obtainedz52.106(2) withQ50.99 in the range
@30–200#, which does not agree with the value obtain
from Eq. ~12!. However, as we move away from the tricrit
cal point, the values ofz obtained~Table I! with Eq. ~16!
show a clear trend toward the expected value of the dyna
exponentz @z52.156(2)# of the 2D Ising model@33#. On the
other hand, the values obtained from the cumulant in
~12! remain essentially the same along the entire critical li

C. Static exponents and universality class

The exponent 1/nz can be obtained by differentiatin
lnM(t,t,m0) with respect to the temperature atTc ,

] ln M ~ t,t,L !

]t U
t50

;t1/nz, ~17!

FIG. 4. Time evolution ofF2(t) for L5160 with mixed initial
conditions@Eq. ~16!#.
0-4
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if we consider the scaling relation for the magnetizati
when the initial state of samples is ordered (m051) @29#.

Our results fornz were obtained through finite difference
at Tc6d with d50.001. They rely onNB55 independent
bins with NS55000 samples each forL5160. The time in-
terval @80–200# corresponds to the range where the goo
ness of fit parameter attains its highest value (Q50.99).

In Fig. 5 we show the log-log behavior of the derivativ
]tln M(t) at kBTc /J51.6950 andDc /J50. In Table I we
present our final estimates of 1/n. The sixth column is ob-
tained with the estimates ofz from Eq. ~12! ~data in fourth
column!, while the seventh column corresponds to estima
for n with values ofz from Eq. ~16! ~data in fifth column!.

Since we have already collected estimates fornz @Eq.
~17!#, it is straightforward to obtain estimates forb follow-
ing Eq. ~14!. Our estimates ofb are presented in the las
column. Our values in Table I can be compared with th
retical predictions for an Ising-like critical point (1/n51,b
51/8).

IV. RESULTS FROM SHORT-TIME DYNAMICS
AT THE TRICRITICAL POINT

From the results presented in Refs.@1# and @14# we can
describe the time dependence of the first moment of the m
netization for the 2D Blume-Capel model as

M ~ t !;H m0tu, tmic,t,t i ,

t2b/nz, t i,t,tt ,
~18!

for an initial small magnetizationm0, whereu.0 (u,0)
identifies a critical~tricritical! point. Herett stands for the
time before the system has reached thermal equilibrium.

We also included in Table I our estimates foru,z,1/n and
b at the tricritical pointkBTt /J50.610, andDt /J51.9655,
for lattice sizeL580.

In Fig. 6 we show the values ofu for five different initial
magnetizationsm0 at the tricritical point. Our estimates fo
eachu(m0) were obtained fromNB520 independent bins
with NS510 000 samples, fort up to 80 sweeps. The leas
square fit to data in Fig. 6 givesu520.53(2) with goodness

FIG. 5. Time evolution of the derivative]tln M(t,t)ut50 for
L5160 and initial magnetizationm051.
02613
-

s

-

g-

of fit Q50.75. The corresponding study with the time corr
lation functionC(t) in Eq. ~8! also givesu520.53(2) with
Q50.99 in the time interval@20–80#. Data are shown in
Fig. 7.

We have checked further this value foru calculating the
spin-spin autocorrelation function

A~ t !5
1

Ld K (i
Si~0!Si~ t !L ;t2(d/z2u). ~19!

Our data analysis as a function oft ~see Fig. 8! gives d/z
2u51.457(6), with acceptableQ (Q50.56), coincidently in
the same time interval@20–80#, with NS520 000 samples. If
we take in advance our estimates forz presented below, this
result leads tou520.55(2) or tou520.554(6), respec-
tively, for z52.21(2) andz52.215(2), corroborating our
independent estimate ofu at the tricritical point.

The generalization of the dynamic scaling relation for t
kth moment of the magnetization at a tricritical point can
written as@34#

FIG. 6. Exponentu in function of initial magnetizationsm0 for
L580 at the tricritical point. The straight line is a least-square fit
the data.

FIG. 7. Time correlation functionC(t) at the tricritical point.
0-5
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M (k)~ t,t,g,L,m0!

5b2kb t /nM (k)~b2zt,b1/nt,bf t /ng,b21L,bx0m0!.

~20!

It differs from the critical case by the scaling fieldg that
measures the deviation from the transition line at the tricr
cal point. The quantityf t is known as the crossover expo
nent. At tricriticality t5g50.

We show in Fig. 9 scaling collapses of the cumula
U4(t,L) at the tricritical point, quite different than the sca
ing collapses at a critical point~Fig. 3!. Our estimate based
on Eq. ~12! leads toz52.21(2) obtained from the pair o
largest lattice sizesL540 and 80. The value is the same f
time intervals@10,1000# and @200,1000#. Another estimate
for the dynamic exponent, based on Eq.~16! gives z
52.215(2) obtained from a larger lattice (L5160) in the
time interval @30,200#, with Q50.71. We do not show the
log-log plot ofF2(t) in this case because it is quite similar
Fig. 4. We had to restrict the time interval, when compa
with the U4 calculation, in order to obtain acceptable valu
for Q. Here, in contrast to the different estimates ofz ~fourth
and fifth column! at the critical points listed in Table I, bot
methods lead to the same estimate forz.

FIG. 8. Autocorrelation functionA(t) at the tricritical point.

FIG. 9. CumulantsU4(t,L) for L510, 20, 40, and 80 for an
initial magnetizationm050 at the tricritical point. The symbols on
the lines show the cumulants with lattice sizesL/2 rescaled in time
with z given by Eq.~13!.
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The evaluation of static exponentsn andb at the tricriti-
cal point follows the same procedure as applied on the c
cal line. Estimates exhibited in Table I are in good agreem
with results provided by conformal invariance@21,24# 1/n
59/5 andb51/24.

Next, in order to study the influence of the local dynam
on the values of the exponents we recall the simulations w
Glauber dynamics performed by Bonfim@34#. Our estimate
of b/nz obtained from the decay of the magnetization~start-
ing from initially ordered state! is 0.0381(1) with the heat-
bath dynamics, whereas the value quoted by Bonfim w
used Glauber update is 0.037 67(73), reinforcing the
namic universality also for tricritical behavior.

V. CONCLUSIONS

We have performed short-time Monte Carlo simulatio
to evaluate dynamic and static exponents at critical and t
ritical points of the spin-1 Blume-Capel model.

According to analytical predictions by Janssen and Oe
ing, a negative value for the new exponentu was obtained at
the tricritical point. In order to confirm that prediction w
calculatedu by three different techniques:~i! directly, by
following the power law behaviorM (t)}m0tu when the
samples are sharply prepared with a small initial magnet
tion m0; ~ii ! studying the time correlation of the magnetiz
tion C(t) which also evolves in time liketu, and~iii ! calcu-
lating the autocorrelation functionA(t) which decays like
t2(d/z2u) whered52 in the present case andz is the dynami-
cal critical exponent at the tricritical point. All of our est
mates foru, at the tricritical point, are in the range20.57
<u<20.51. The dynamic exponentz was also calculated by
different techniques: first by collapsing the fourth-ord
Binder cumulantU4 for several pairs of lattices, and secon
by following the ratioF2(t) which explores scaling laws fo
the moments of the magnetization under mixed initial con
tions. Both methods lead essentially to the same value (2
but the error bar in the second case is ten times smaller
that obtained by the Binder cumulant. The value ofz was
used to obtain the static exponentsb andn, in good agree-
ment with exact values provided by conformal invariance

Dynamic exponents were also calculated along
second-order critical line. Estimates foru andz are in good
agreement with the results for the 2D Ising model, indicat
that universality stays valid in the dynamic level. However
is worthwhile to mention that the recently proposed tec
nique @33# based on mixed initial conditions is more sen
tive to crossover effects than fourth-order Binder cumula
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@11# T. Tomé and J.R. Drugowich de Felı´cio, Mod. Phys. Lett. B
12, 873 ~1998!.

@12# J.F.F. Mendes and M.A. Santos, Phys. Rev. E57, 108 ~1998!.
@13# J.B. Zhang, L. Wang, D.W. Gu, H.P. Ying, and D.R. Ji, Phy

Lett. A 262, 226 ~1999!, and references therein.
@14# H.K. Janssen and K. Oerding, J. Phys. A27, 715 ~1994!.
@15# M. Blume, Phys. Rev.141, 517 ~1966!; H.W. Capel, Physica

~Amsterdam! 32, 966 ~1966!; 33, 295 ~1967!; 37, 423 ~1967!.
@16# M. Blume, V.J. Emery, and R.B. Griffiths, Phys. Rev. A4,

1071 ~1971!.
@17# I. D. Lawrie and S. Sarbach, inPhase Transitions and Critica
02613
:

.

Phenomena, edited by C. Domb and J. L. Lebowit
~Academic, London, 1984!, Vol. 9.

@18# A.N. Berker and M. Wortis, Phys. Rev. B14, 4969 ~1976!;
T.W. Burkhardt,ibid. 14, 1196~1976!.

@19# D.P. Landau and R.H. Swendsen, Phys. Rev. Lett.46, 1437
~1981!.

@20# F.C. Alcaraz, J.R. Drugowich de Felı´cio, R. Kóberle, and J.F.
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